
Surviving Client/Server:
Credit Payments, Part 1
by Steve Troxell

About a year ago I had to de-
velop a fairly involved credit

accounting and payment system.
The business rules of the system
were quite novel and posed a few
challenges. I thought it would be
informative to share that experi-
ence with you and point out the
reasoning behind some of the de-
sign choices. While you’re not
likely to encounter this exact situ-
ation yourself, many of the con-
cepts can be generalized and may
be helpful in learning client/server
techniques.

The Problem
The situation is this: any customer
may take out a credit slip for any
amount, subject to caps on their
available credit limit. The cus-
tomer will repay the credit in full or
make several partial payments un-
til the balance is cleared. So far,
this is fairly typical. The complicat-
ing factors are that a customer may
have any number of credits out-
standing at the same time and a
single payment may be used to pay
off more than one credit. For exam-
ple, if I have a $1000 credit and a
$2500 credit, I can make one pay-
ment of $3500 to cover them both.
The payment is recorded as a sin-
gle payment, but is applied to two
outstanding credits.

In addition, a payment may con-
sist of several forms of currency:
cash, personal check, cashier’s
check, etc. The form, or method, of
payment must be recorded sepa-
rately. Therefore, we have a single
payment with two dimensions to it:
it may span one or more credits
and may consist of one or more
payment methods. Also, the alloca-
tion of each portion of the payment
made against each credit must be
accounted for. Back to the pre-
vious example with my $1000 and
$2500 credits, I may make a pay-
ment of $3500 consisting of $900 in

cash, $2100 in the form of a per-
sonal check and $500 in the form of
a cashier’s check. I wish to pay off
the $1000 credit with $500 in cash
and $500 from the personal check,
with the remainder of the payment
going against the $2500 credit
($400 in cash, $1600 from the per-
sonal check and the $500 cashier’s
check). All of this must be tracked.

If you think this is complicated,
I’ve thrown out several other fac-
tors to simplify this from the real
life case. The demo application de-
scribed in this article is spartan by
necessity. My intent is to focus on
the overall techniques and princi-
ples. I have not devoted much
space to fleshing out the applica-
tion with full data validation and
complete user interface dialogs.
The Local InterBase demo applica-
tion and database can be found on
the disk in the SURVIVE directory.

We’ll discuss three main areas of
this system: issuing the credit
slips, recording payments to cred-
its and reporting payment activity.
Recording payments is by far the
most complex element and we’ll
devote more space to that. From
our analysis and prototyping,
we’ve come up with the simplified
screens shown in Figures 1 through
3. Of course, in a real system there
would be much more detail than is
shown here. Also, I’ve omitted the
obvious function of selecting the
customer before entering these
screens.

Issuing Credits
Issuing the credit slip is a fairly
straightforward and mechanical

process so the dialog shown in
Figure 1 serves our purpose of sim-
ply getting something into the da-
tabase so that we can move on to
the task of recording payments
against credits. Listing 1 shows the
table we will use to record credits.
However, there is one interesting
technique here worth exploring.
The number used to uniquely iden-
tify the credit in the system is es-
sentially an auto-increment field.
However, we must display the
number to be used in the dialog
when it first appears, before we’ve
posted the credit to the database
and obtained the automatically
generated number.

In addition, since credit numbers
are tightly monitored by the busi-
ness, we would like to account for
all credit numbers used, even if the
transaction was cancelled. For ex-
ample, if we’ve brought up the
Issue Credit dialog and obtained a
credit number, then decided to
cancel the dialog, we must account
for the credit number that was
“burned” since it cannot be reused.
Therefore, if we find any gaps in the
sequence of credit numbers, we
have a good indication that some-
one has been tampering with the
system (by issuing a credit then

create table Credits
(CreditNo integer not null primary key,
 Status char(1) default ’V’ not null,
 CustNo integer not null,
 Amount float default 0 not null,
 BalanceDue float default 0 not null,
 IssueDateTime date default ’now’ not null);

➤ Listing 1

➤ Figure 1

July 1997 The Delphi Magazine 33

destroying all trace of it from the
system so that it doesn’t have to be
repaid).

Here’s a solution to this di-
lemma. Rather than use a true auto-
increment field for the credit
numbers, we use an InterBase gen-
erator (also because InterBase
doesn’t have true auto-increment
fields). When the Issue Credit
dialog is brought up, we immedi-
ately insert a new row into the
Credits table. This new row is given
a status of void and the credit num-
ber used is passed back into the
Issue Credit dialog for display.
Now, if the user cancels the dialog,
we’ve already accounted for the
credit number with a voided credit
in the database (you may also de-
cide to create a special status code
just for cancelled transactions). If
the user completes the transac-
tion, we use the credit number to
update the existing row in the
Credits table.

Listing 2 shows the Delphi and
SQL code behind the Issue Credit
dialog. The stored procedure
CreditNew is called when the form is
displayed and takes care of gener-
ating the initial voided credit and
returning the credit number. When
the user clicks Post the qry-
CreditInsert query is executed to
update the existing record.

Payments
Handling payments of these credits
is where all the action is. Figure 2
shows the main payment screen.
The grid at the top shows all the
outstanding credits for the cus-
tomer. The user may select one or

more of these credits to be paid
with a single payment. The sum of
all the balances of the selected
credits is shown in the Credits To
Pay box. The grid at the bottom lists
all the possible payment methods.
The user enters the appropriate
amount for each method and the
total of all methods is the total for
the entire payment and is shown in
the Payment box. If a payment does
not total up to the amount of the
credits to pay, then a balance due
is calculated and one or more of the
credits will be partially paid. These
credits will remain outstanding
although presumably with a lower
balance due than before.

Payment Method Codes
The list of payment methods seems
a mundane aspect of the system at
first glance. However, quite a bit of
forethought went into the design of
the payment method codes.

While the list of possible method
types will probably remain static
and unchanging for some time,
there is the possibility that new
payment methods may be added in
the future. In addition, different
sites for the same system may want
different combinations of payment
methods. For these reasons, pay-
ment methods were defined in a
table in the database. This way, the
set of methods and codes can be
easily customized for individual
sites, and new methods can be
added at will.

Our payment method table is
defined and populated as shown in
Listing 3. The Sequence column
defines the order in which the

methods will be displayed in the
method grid of the application (see
Figure 2). A defined sequence is
necessary since we cannot rely on
physical order and alphabetical
order on either of the other col-
umns may not be desirable. This is
important to keep in mind when
designing tables containing such
lists of items, especially if you elect
to use simple numeric codes rather
than mnemonic alphanumeric
codes.

For example, suppose our code
values were simply the digits 1, 2, 3
and so on. Developers will gener-
ally elect to sort on the code value
when displaying the list in combo
box dropdowns, grids, etc. Now the
field is serving two purposes: defin-
ing the code value for the item and
the sequence of that item relative
to other items in the list. Once data
has been written to the database,
the sequence of items is locked in
forever unless you recode the data
in the database.

Notice we have an Other item
which is a catch-all for any type of
payment method we haven’t spe-
cifically accounted for. Suppose we
add a new payment method a year
after installation of the system. Our
numeric code sequence forces us
to use the next number in sequence
as the code value for this new
method. Unfortunately, we are also
sorting on this column so all new
code values sort out after Other in
any list of all items. Clearly it would
be more desirable for a catch-all
category like Other to always sort
out to the bottom of the list. The
alternative is to recode Other to a

➤ Left: Figure 2 ➤ Above: Figure 3

34 The Delphi Magazine Issue 23

higher value to make room for the
new code, and then recode all
references to Other in the database
to the new value. A better ap-
proach would be to give Other an
arbitrarily high value like 9, but
that puts a cap on the growth po-
tential of the table until you hit
Other eventually.

The independent Sequence field
avoids these issues. It also carries
the side benefit that the order of
methods in the list can be custom-
ized from site to site if needed with-
out impacting the underlying logic
of the system.

Granted, this is a pretty in-depth
analysis for something as relatively
trivial as a payment method code
table. But, like everything, it’s
easier to learn the principles on the
small cases in order to recognize
the issues and then apply the
techniques to larger cases.

But we’re not done with the pay-
ment methods table yet. The pay-
ment methods are not likely to
change very frequently but could
change. We could store the pay-
ment methods in local tables on
the workstations to improve
throughput across the network.
But if a change should be neces-
sary, all the local tables need to be
updated and there is always the
likelihood of one or more being
missed. We’ve elected to keep the
lookup table in the central data-
base server and load up a string list
internally when the application
starts up. The application always
uses the internal string list from
that point on. This way, the data is
freshened every time the applica-
tion starts up, but if a change is
necessary, the central copy of the
table can be changed and you can
be assured that every workstation
will receive the updated table once
they are restarted. Sometimes I’ll
load the internal string lists upon
user login instead of program start
up. This is most helpful in applica-
tions that are generally up 24 hours
a day, 7 days a week. All internal
data is refreshed upon a new user
login rather than requiring a
restart of the application.

The data module unit handles
this for us. It declares a Payment-
MethodsList string list which we

Delphi unit:
unit fmIssue;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, StdCtrls, DB, DBTables;
type
 TfrmIssue = class(TForm)
 ...
 procedure FormClose(Sender: TObject; var Action: TCloseAction);
 procedure btnPostClick(Sender: TObject);
 private
 public
 CustomerNo: LongInt;
 procedure PopulateForm;
 end;
var frmIssue: TfrmIssue;
function ShowMarkerIssueDlg(aCustomerNo: LongInt): TModalResult;
implementation
{$R *.DFM}
uses dmData;
function ShowMarkerIssueDlg(aCustomerNo: LongInt): TModalResult;
begin
 Application.CreateForm(TfrmIssue, frmIssue);
 try
 with frmIssue do begin
 CustomerNo := aCustomerNo;
 PopulateForm;
 Result := ShowModal;
 end;
 finally
 frmIssue.Release;
 end;
end;
procedure TfrmIssue.PopulateForm;
begin
 { Generate a voided credit record and obtain the credit number }
 with dmDataModule.spCreditNew do begin
 ParamByName(’iCreditNo’).Clear;
 ParamByName(’iCustNo’).AsInteger := CustomerNo;
 ExecProc;
 edtNumber.Text := IntToStr(ParamByName(’oCreditNo’).AsInteger);
 end;
end;
procedure TfrmIssue.FormClose(Sender: TObject; var Action: TCloseAction);
begin
 Action := caFree;
end;
procedure TfrmIssue.btnPostClick(Sender: TObject);
begin
 { Update the existing credit record }
 with dmDataModule.qryCreditIssue do begin
 ParamByName(’CreditNo’).AsInteger := StrToInt(edtNumber.Text);
 ParamByName(’Amount’).AsFloat := StrToFloat(edtAmount.Text);
 ExecSQL;
 end;
end;
end.

spCreditNew stored procedure:
create procedure CreditNew(iCreditNo integer, iCustNo integer)
 returns (oCreditNo integer)
as begin
 if (iCreditNo is null) then
 iCreditNo = gen_id(Gen_CreditNo, 1);
 oCreditNo = :iCreditNo;
 insert into Credits (CreditNo, CustNo)
 values (:iCreditNo, :iCustNo);
end;

qryCreditIssue query:
update Credits
 set Status = ’I’, Amount = :Amount,
 BalanceDue = :Amount, IssueDateTime = ’now’
 where CreditNo = :CreditNo

➤ Listing 2

create table PaymentMethods
(
 PayMethodCode char(2) not null primary key,
 PayMethodName char(20) not null,
 Sequence smallint not null
);
commit;
insert into PaymentMethods values (’CS’, ’Cash’, 1);
insert into PaymentMethods values (’CK’, ’Personal Check’, 2);
insert into PaymentMethods values (’TC’, ’Traveler’’s Check’, 3);
insert into PaymentMethods values (’CC’, ’Cashier’’s Check’, 4);
insert into PaymentMethods values (’OT’, ’Other’, 5);

➤ Listing 3

July 1997 The Delphi Magazine 35

can use throughout the applica-
tion. When the data module is
created, it runs a query to fetch the

payment method codes and then
populates this list (see Listing 4).
The payment method name is kept

in the string list while the list’s
Objects array contains a pointer to
a null-terminated string containing
the method’s code value.

Conclusion
Unfortunately, that’s all the space I
have this month. Next month, we’ll
complete our look at this credit
system and explain the multi-
dimensional payment processing
in depth.

We’ll also look at a simple
TDBGrid descendant component
that allows us to do the multiple
non-consecutive selection which is
required in the payment dialog.

Steve Troxell is a Senior Software
Engineer with TurboPower Soft-
ware. He can be reached by email
at stevet@turbopower.com or on
CompuServe at STroxell.

unit dmData;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls,
 Forms, Dialogs, DB, DBTables;
type
 TdmDataModule = class(TDataModule)
 ...
end;
var
 PaymentMethodsList: TStringList;
 dmDataModule: TdmDataModule;
implementation
{$R *.DFM}
procedure TdmDataModule.dmDataModuleCreate(Sender: TObject);
var
 Code: PChar;
begin
 PaymentMethodsList := TStringList.Create;
 with qryPaymentMethodsGet do begin
 Open;
 try
 while not Eof do begin
 Code := StrAlloc(Length(FieldByName(’PayMethodCode’).AsString));
 StrPCopy(Code, FieldByName(’PayMethodCode’).AsString);
 PaymentMethodsList.AddObject(FieldByName(’PayMethodName’).AsString,
 TObject(Code));
 Next;
 end;
 finally
 Close;
 end;
 end;
end;
end.

qryPaymentMethodsGet query:
select * from PaymentMethods order by Sequence

➤ Listing 4

36 The Delphi Magazine Issue 23

	The Problem
	Issuing Credits
	Payments
	Payment Method Codes
	Conclusion

